3.2.95 \(\int \frac {\sec (c+d x) (A+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx\) [195]

Optimal. Leaf size=126 \[ \frac {(A-7 C) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A+C) \sec (c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(A+5 C) \tan (c+d x)}{2 a d \sqrt {a+a \sec (c+d x)}} \]

[Out]

1/4*(A-7*C)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2)-1/2*(A+C)*sec(d*x+
c)*tan(d*x+c)/d/(a+a*sec(d*x+c))^(3/2)+1/2*(A+5*C)*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 126, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {4164, 4086, 3880, 209} \begin {gather*} \frac {(A-7 C) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {(A+5 C) \tan (c+d x)}{2 a d \sqrt {a \sec (c+d x)+a}}-\frac {(A+C) \tan (c+d x) \sec (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

((A - 7*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - ((A + C)
*Sec[c + d*x]*Tan[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2)) + ((A + 5*C)*Tan[c + d*x])/(2*a*d*Sqrt[a + a*Sec[
c + d*x]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 4086

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(a*B*m + A*b*(m + 1))/(b
*(m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B
, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] &&  !LtQ[m, -2^(-1)]

Rule 4164

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(
m_), x_Symbol] :> Simp[(-(A + C))*Cot[e + f*x]*Csc[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(2*m + 1))), x] - Dist[
1/(a*b*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[(-b)*C - 2*A*b*(m + 1) + a*(A*(m + 2) -
C*(m - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx &=-\frac {(A+C) \sec (c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {\int \frac {\sec (c+d x) \left (a (A-C)+\frac {1}{2} a (A+5 C) \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{2 a^2}\\ &=-\frac {(A+C) \sec (c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(A+5 C) \tan (c+d x)}{2 a d \sqrt {a+a \sec (c+d x)}}+\frac {(A-7 C) \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a}\\ &=-\frac {(A+C) \sec (c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(A+5 C) \tan (c+d x)}{2 a d \sqrt {a+a \sec (c+d x)}}-\frac {(A-7 C) \text {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{2 a d}\\ &=\frac {(A-7 C) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A+C) \sec (c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(A+5 C) \tan (c+d x)}{2 a d \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.88, size = 127, normalized size = 1.01 \begin {gather*} -\frac {\left (\sqrt {2} (A-7 C) \text {ArcTan}\left (\frac {\sqrt {-1+\sec (c+d x)}}{\sqrt {2}}\right ) \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {-1+\sec (c+d x)}+2 (A+5 C+4 C \sec (c+d x)) \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \tan \left (\frac {1}{2} (c+d x)\right )}{2 a d (-1+\cos (c+d x)) \sqrt {a (1+\sec (c+d x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

-1/2*((Sqrt[2]*(A - 7*C)*ArcTan[Sqrt[-1 + Sec[c + d*x]]/Sqrt[2]]*Cos[(c + d*x)/2]^2*Sqrt[-1 + Sec[c + d*x]] +
2*(A + 5*C + 4*C*Sec[c + d*x])*Sin[(c + d*x)/2]^2)*Tan[(c + d*x)/2])/(a*d*(-1 + Cos[c + d*x])*Sqrt[a*(1 + Sec[
c + d*x])])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(404\) vs. \(2(107)=214\).
time = 12.32, size = 405, normalized size = 3.21

method result size
default \(\frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (-1+\cos \left (d x +c \right )\right ) \left (-A \cos \left (d x +c \right ) \sin \left (d x +c \right ) \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+7 C \cos \left (d x +c \right ) \sin \left (d x +c \right ) \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-A \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sin \left (d x +c \right )+7 C \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sin \left (d x +c \right )+2 A \left (\cos ^{2}\left (d x +c \right )\right )+10 C \left (\cos ^{2}\left (d x +c \right )\right )-2 A \cos \left (d x +c \right )-2 C \cos \left (d x +c \right )-8 C \right )}{4 d \sin \left (d x +c \right )^{3} a^{2}}\) \(405\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/4/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))*(-A*cos(d*x+c)*sin(d*x+c)*ln(-(-(-2*cos(d*x+c)/(1+co
s(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+7*C*cos(d*x+c)*sin(
d*x+c)*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d
*x+c)))^(1/2)-A*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos
(d*x+c)-1)/sin(d*x+c))*sin(d*x+c)+7*C*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c))
)^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*sin(d*x+c)+2*A*cos(d*x+c)^2+10*C*cos(d*x+c)^2-2*A*cos(d*x+c)-2*C*
cos(d*x+c)-8*C)/sin(d*x+c)^3/a^2

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sec(d*x + c)/(a*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [A]
time = 2.98, size = 374, normalized size = 2.97 \begin {gather*} \left [\frac {\sqrt {2} {\left ({\left (A - 7 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (A - 7 \, C\right )} \cos \left (d x + c\right ) + A - 7 \, C\right )} \sqrt {-a} \log \left (-\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 3 \, a \cos \left (d x + c\right )^{2} - 2 \, a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, {\left ({\left (A + 5 \, C\right )} \cos \left (d x + c\right ) + 4 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, -\frac {\sqrt {2} {\left ({\left (A - 7 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (A - 7 \, C\right )} \cos \left (d x + c\right ) + A - 7 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 2 \, {\left ({\left (A + 5 \, C\right )} \cos \left (d x + c\right ) + 4 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/8*(sqrt(2)*((A - 7*C)*cos(d*x + c)^2 + 2*(A - 7*C)*cos(d*x + c) + A - 7*C)*sqrt(-a)*log(-(2*sqrt(2)*sqrt(-a
)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) - 3*a*cos(d*x + c)^2 - 2*a*cos(d*x + c) +
a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 4*((A + 5*C)*cos(d*x + c) + 4*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x
 + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), -1/4*(sqrt(2)*((A - 7*C)*cos(d*x +
 c)^2 + 2*(A - 7*C)*cos(d*x + c) + A - 7*C)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos
(d*x + c)/(sqrt(a)*sin(d*x + c))) - 2*((A + 5*C)*cos(d*x + c) + 4*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*s
in(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)*sec(c + d*x)/(a*(sec(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [A]
time = 1.74, size = 185, normalized size = 1.47 \begin {gather*} \frac {\frac {\sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} {\left (\frac {\sqrt {2} {\left (A a^{2} + C a^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {\sqrt {2} {\left (A a^{2} + 9 \, C a^{2}\right )}}{a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a} - \frac {\sqrt {2} {\left (A - 7 \, C\right )} \log \left ({\left | -\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/4*(sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*(sqrt(2)*(A*a^2 + C*a^2)*tan(1/2*d*x + 1/2*c)^2/(a^3*sgn(cos(d*x + c)
)) - sqrt(2)*(A*a^2 + 9*C*a^2)/(a^3*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2*c)/(a*tan(1/2*d*x + 1/2*c)^2 - a) -
sqrt(2)*(A - 7*C)*log(abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/(sqrt(-a)*a*s
gn(cos(d*x + c))))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\cos \left (c+d\,x\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)*(a + a/cos(c + d*x))^(3/2)),x)

[Out]

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)*(a + a/cos(c + d*x))^(3/2)), x)

________________________________________________________________________________________